chapter400, [SORA quantum] sample verify/signature 3.

投稿者: | 04/24/2022

Quantum public key:
0x3b963490080231f8d6dda4952aa36413bbb833723bbdf2f146d46f64626520c3c80e3ffc8025fb381f03e4b96e0f0dd47f6b326597688c158fea588dc1db03ab651867f5f818a1b25e439957f3c4791c84cdf7cbc14fcf5676654f8241d364a5c7bfb87da6c0cedb19cdcfc2a58c88231cfaf488b2d8607a3225ae5048bf27706f8939ec2478990530ffffce3f1ffbfbb8ac58e253c4ac1f6fe685c04940aba6a739567ccdd1b0a3d5a3421a9ae3592a6ee930349685a57027efe2aecb42efe7cd54c36f5de9fcce88440753ce4c22302ffb704e065a49abec7b188b4b2757fa6265ca86763f2e49e89eb163a7be681629db85f7504ebe8e03d36f3b0ac98aa8268d014732308dd83756e5c691e1bd58b222cf031b43d8b7a46abe37172fe7b09524c2590dbff56bef7bb927925fe690827acd826690f65d65c1921c375731a607af25233fd33ad5704b2ec95f6f9f606bc6d4d27652744037b8c50dcd00b8987f28377aa09e395af66d82e51e9bebe29dba3cb64cfa11abdf142a7220f2d287279d8d7844e0328ac646fc5fedd1b4195156084f953b1d8d12f9b8838a717c031528a0b22a2b33ab68227fa7637f4cdfd302e5c8051309abcd5cf5c0ba85e460e1a3828e15a4c7fcd852961b3e7c6f380ce4ef4ac0380754832858690db31b3ac8151854003fe2e4346e5e4e07216f058e1e012586f057ed3e0eb8031b89026d34a0d708e3da96a2de508a5aebf5b1c9a5ee14ec491b6aed717e4366f95ed1467d073a7fe6e51d404e839122d9ddd4b27db45c0490f6e0b1377198e26530852d2940a569568a9defc5ae7e315dca5e34b92fed33f74ae9eb89e9f2e51b8455ce091207464e63e5f0c9438919c76bcd40b0f1b3b51a5129a25024f5d64b71715c127a210ce13750db372ccce7ad53f296f4c7252507a12f5d25f2aaa977bb17d5c7001468965db4de6a0b2df3e54fa7c34ca981b3a6ad49936b08d4829bbd792274246ecf5deedcaed7357e3f7e5e3faaeb65cddb02a610b41a6dcf35a20e134565212eb24f83b998e7ade26412b3cc9315e0b3d8a325c59b9351d6d6f094136994b25111a09015fb67f4c28254cb0eebe08488e24545ba14d286e3dcf16117f50acdb1c8d101efc7b72e474be03ecf903ab3e533ef2fd590bbde5e60ada2009e662947d6d52d1516f51b2b8352c50f227998218ee45c1836e1a0720e7c1757347ccf7b667af89d0fab53b737cfa4fce16af14c5e5366c52db00d9ba90051595068fbc3ab858204cd51a2b837d50909d4afcd97797821a5ed130992bb7e0312d1b238c1db8d68d624b1b8ee9e4d3dd387f80f168358fcdee79c313049c9f5dbd44b4a8d3ff6c0e9ddf0004a233dfd3a4930f05e618b8c60836b137e7357c6c9172444c867cb51224bc0e089235295c82e00258e45ed702f360e8cc6e322757bdc

Data:
The relationship between mathematics and philosophy is similar to the relationship between Shiba inu and calico cat.

Signature:
ZaPK0uj8IY2lOCuWlHiVgW8f6pMYOeC/guNyxfZDSNf5xdCLoytQNYY6jhBLWfs2Wrdq1Ru3U3Urr0z/snNPVlXh3twPb1A6cRdpU+6+HWkAkU0aALZ1gQtBNYT7QkJfVykX2BBA/FEM6x5kW3groX3mEdiUL0VnYQMqtXmLetukD5N7g7+lP76L5TxWUyYNbOttelqA21k3ZJAbHFWJho3nukFHzZ9GkmTutBvksu6xp3B/8Ky5NKRIsH8ZeLllb9xY3owJ3Y0gvtzmeFrJRI+Z52NkcGDkj5OdxfM2j8qJ9HUCSU18OtoOdMNtAZ+jNa05RcZlbrVc8SRxiIr9GwokJBXo8PVNq8KjXMLvl3TZ9cVeA1jaPD9EsSkkJ2Bb0rN1dabq6N8EgwFd7W7VU9+1LPJxMwMPx5Ga70v2WRBIcFQG8qfG7WJZIQABn2jZ8R4kYlugvYv3xrykbEJjiZz/w66vG5ifpiSX8BUvoYypqeMxMyztW28UkuMwmLC7XG2OqCleqt6aQt57590j41n/bQY9vQIbMpJJhk1KTKE/mwuNZT+T/eVw+S6sJ7pAUjVAFl0tU6slIxky8urzjLrcFYJMGVvdtGcKgyRhMycTxm6iVDJK3iXYy+YuHM2CAYEKm8zZan4qvkb2e+q6saSPDDLjGoCUeGbC6ROkY1nLudNc9Td/10tASu3QzB+mj6vjjpIN1aRz5S58P9zf3qXK0f4GDG+sofCKspkYcI8YiAJsiuXyxgyK7rTIkr+b6ITWA1hTt4bPEq9HGIHTMLhx2IflBx/xRebxklxbh7OcPWl6CgD5BR/gjO8gd933XD12m6kwMV+4XFIxjayJoqBZ4AuNbnNqE/MEfsipVaufXVV5xvO2Fl/KFGVeMDU0aZ0Fzh0l6L2Q4Gh7L9F67cGkdDvaefvEdYAvAVqX/wCWwmPxUXR3gumH8T9xu7H+QBO951ic72rVGaD91wUszeSvMovvj5FygxtDmWhqRn8ZHdFgpCe+J0DX5soT2T5Fqt657WheqwoIvPqei8yaM6J7M3Ye5gDXj98u8/FlMKcLvkeWcVGRJ893v5dd8yeKxSNq+X/+aZK3JfDoMU1cA556dhN0W0TYyRr4/c/FHlCFI+ASlJLdhMZxIcnFBezR1xYQIKK2rrU6KLSceo8m2iNbfXqO9S98U9HFPyPwttjOI0qyWNA+Yyui8Cqi+LnKujqCd9k71448L80HosCFJFYosZuXj2CZ3tLFNOV04d5C+dWHm8rjKmFWGJY+1sw4vpj+kjO22j3ZA8Wyp4Rf7nX2MhZ0m7gXrfMd+U8gceGLfRNLlHJicCBJQGHR5o5vZgNKGmALbGo/6FvV0eVZGcjzbpWSQZ+tBSBOjvx2QE25QN4ilZ6xt4/5nM6jfmV00H2AKzzKMR3LKnXGf97lm7fXzb952YgRYDm84F717mXLd6p1oWWB0ilbdY6H22MvT58g2yGCjmU1AnbVulhUN7FFypOGrcOSk1zn+b+al0OKphIXEpRx2SHEDEn3y4wTVCe29jMwWdN37lwQ94d1pqt61EooB8I+a+7TP3ENNOml2KKFAZxjN5TfxVXxKFZNYT+s6xmPxPvrOPl/agLDBGKGWDB5TvwIpzfNTI+IAOgFAbgx/CDsT2PjzbBqllpfqlbfI1rpsus/yz8YjRejUALPeL+c9sBP8lw6t8o8XQ56OZbOqIRcQ5lPdr/Sthv7UCef++FOD8GdAlC+VQihK6IN6u4M+ufiu0RWH1PZY6GrMKxCCSkX/VmAOKe+flRys70Ji+ANx+o8tvl9TCmT+i4aH6NoiJyNOqXfi0ULWV05RVmIVes1YMcLfcESVikkopJZAH7GeUpL8SsKOFbBuf4m3PT9+xBiRGWd5xo82AGmwUrIzmG58O3f5pH2sMgOnavO5aI4cJ86NUTaZhgimCOJCNi2B4qX811PEiShFd4b5Amu2VFbGdB1s+U2bDK13s/Tmjg17Z7wPlY8TCXF3YLR42lDPjSiDmZb7E5pzzB0Bekv20DCUV5iuNaQPcwUBA8LcmIJ2j6k+zGJsmLYB4npKvvglw9wtDoipBZ8AaRot3ubj+J6sRMl1iVnclUMEuiMbnkTcivjIUpmJxZRMcuEu7H7ySKotKDFGwR6X4rBK++zRWJSH/r4z7xgh+/yfdCRwqjiVSO4HlmBMs82UsZkGf3M7xtkV/YpyVkfPtcV/WuDBabw98xp63sKmit4p0FTwTQ8AFIHLSuRtwOeMXr0TCZiXAB5HX8DtuyIxBBLftjjAVN2YvPRh/XYXrUkkRISd92NpVTzLaB7gApbZhLxnuCVjHc2CrCDzQdUv/6ipIL3oSqr3rsT0i44gUHC2jviBnEYHLXnyZ6+yaxE7M5x2An+MeTpOCWZRzlOizalzdEngrqIIGDNiWW1CSv54lVUsr3oUM0wJughfTKFleGTJ/0OmecpxjtCmlLwm9FGDMwR5dMqaitUClLruNmZadhrH4DTDj7T9XR/bRyWglfxWtU6pNhtzMSZ/6PwztDTRo4liCEs2M9HeXE1PGN04B1XbvNjeiaAMt+L8CCEko/BbZcDEdgYoXLB5+FaUST+7Yjswy0PR30Sm1FJ0POS9ttcnEINF5FzEJ2wu+GDNMALZLtslGzF/TmlOT5ssnUOIWVQcYsOvF5BQFIxCBzqILcXG9kXmzCevVvth4BIYb+BWtPxIdE1cUeJdmOSaabLahhde7ppKdAx08CbEqfMPEyDJzbmMhVwdDGD9o21wIZCuUSnPZ6kMTedgZUuurv5MzTk8/yM2gwFLTgmv5nYznvVgvVPVjsv2RRnRyyA/zXpC4vMsd5mgKTrL574LjktSHTZfpVi6Pa2VDIHGYFTbl3L/3PR7V0cbRby18J6fQfnB58N4nIrrEvFQhDvDVOgySeJMnNRgyr++jpOLeymMOaAmDGA3CiaaXQ+z1TnCPxotTa0ke/scAtfMxmFZ0r0y8oW86KfHknMpFji4LCpBRzCsPxjX3gblMjC8e5N8llFrLdo14Y4tTurMRc9lkSqxDy2Tw2hz8rw7+Lills6XZWKYhqfb/WfHT2dgob9eLOnHfinpef98hI7ecfKbrnBDmVeV0E0rBoLit8I/iz5uGaEMj/q1AccNY8TYtn6kIfx37UOJHoHxZ2dIKTTA9uyBuGJFWdkMdyRsDMnbM5hbemmEkmIhVojCLbiXJHxZWFTthlZs3LhQdOzB2jh/jqv/fWACs+fSMMNMkdz4FoQKbsLMyEMDd239EqEDCQqqlBwJffml+7DKSo0aOFc3w9ZOmUuWmI3PbFzs3qhQ7MRuYIKaqLfrxqFvpK0fyU0b7465XnuhRClkFIGH64EPhUvpcOTdquM+nKj4j17Ta3eayj54OhT3uohKlWA8oPf74ZEkYlvmGiIM1Aw4y6uxh8T8WfwGJvLFLV4X5vQVRqwyQ8t5zZ85aMaf9y61Laghmg81/QpXO8LgeuisbZUxsZ/+/K8HzjKxEA+rG6yyhVAcBehlKsL+Bd/CxjQV2yLpiNyezCifk1fyyNL8EoO2CVyfBhkyh9xKLXYqmoqOCEHUXRmMbok7XO71YqGISNRhKt4xx+wk6quRH50g4/ssL3Ztw2X8AZjfM/jUAfEhctwedUeSEc8iXanbih/nFSkThL8Mn6Q6HhLfzjfbgTK4bLdvlJl/SwhITpwZFoWdBTnx0L+G1bZ49CoIsilZcbT0OK/ruyV5Q0vkm55P9CKwVi4XNIa1dOGghl21u9yXI89yJggfVWwd/nmXzvNa8hBqMmCEiZQ7yyN1yWcVRVd5pZ1wNSYcXsZ0aPSvNa5fxFENq3A2Yz6R6VoSOWLR3LZ/QJdDot/eTFykAT3XZxKPrJjgI5iSzisU/YEXgdsIT/KTF+lY9VaEeckeFe66gZC7wDK206V+8JsNqVt2uA8xVH0uBMs4NfBdhIj1w9brl43hI3Vk87fZIbrRYsIAC7U/UtUmslKebpwVAZuz3h1GKEWjJ1iPfVts4Kt0VBm+ycO8F/Al9ygqQ8FJTvBZIDWFo96TuzsYm/J+a6EVRdDu/y1lYXRyuzvQW1Bwg7NACDdyPxHiCRKD/2jDR0IyRvxwMw6Vs9EtwB8/URQXXbMc/X0dPeZreZnL8uEbgq7CQidB7SuTOM5IKvmnSlkU5mCvj6Ieh8H6IK3h3ExahF5Tx3fYn+Y42asMoRx+QTdC9i209eWa3BDdT0j6iBsKQAotwf3VacWPlQtAEhNXlUjt1YQwwpV9FiFgssG6wJfX9HIIVCmHFQHKSmuZmW2p6Cw7ZMs9io1VqiEe4+7gBpxu3WReir/3rq1mz1hXIWGNHX5lUnRsV7kyPyzRFaHaDBXEtqimW9zfPXink1yKUdDaT/qM+juOY2+0tbEWne/zZqL2zkYsOD+2svkpw/Caplf1vNTNgPKQIp1QToRmNZlNrGtRQnOueRfKkgfkSWgWrAtWO8mrBxgVx/PQUk+nSi7KlGmxVU188HnqffPqkmbZAIJ8ZV4Ht+BIG9HIZTaKslOYpf/X5YMHR5kutA/dufWJaekX8tCSWEqHGv1imXJkfk9rnSN70YhAhltK1HlK88EYMZdnE61YBnUHVl4DtC5RzXLHEV/B6TyZemNtZElJFNX9J61XTTC+5Pox6JGipgP7Y6+W1s8z0CaE5N0ed0S/gezWF1B4K2oZX+Y+BNM8WXdQYkK1YfppJRnIFA/JloHQgr87Pb1yeIB+7BEQ+dDS/QVJKXfcKR2ha0MAcSHmZ+LJOjmm9ZT6CTz1BTLzCS8QAtnL0lWyPhiJWN5aloHt7x40LsP0+hnC4Yet9mCk1eVLvRq+ehWQdJ6f9H3mPTE0PAbA7hhofBRYppnNIGEtzJTEp0VUKRcutipprNkhUChaXBP4X4j42EHY6em5K92wGlg98p9PeKE8ZxU9szxh05GOHiY/iOBgf6nVG1ttb3xFM++DpMV2YO6spN71+GwhTqNt4QhGZUPWQM6TaXwWT0lgj3DCl7SeKViKNj+duu3DnsFF+O3VJOgFuDk4roytrgaFamgQAbf5PsAiiFL1PZo1sxb3rJYN89gFEF/EZdkMwKwXmqcXFtupoa9l2oA5K267n835Fh8AfHp3HNwvWjpYPAQSfzS2JuTZ41NpIs7MqSU3F6CcxqjbW4Bi5/0babomRSgklfMDDFdwG9E2bz6UlO6Z6UsbKgDuGO/jetIaIUWREdaRF3KZhIBgMZ42MblaThAukZjNPFoDQWq/CJf1vT4BM28PaEVhKGdPEVFLQDynliHDbFrZPMZPw+R0og94G86k+5xzlM+t95yQE9kwBuVl9wWSNfV0GV+xxNsm1YycAFOWtt1KdI8whht3uX7sq3nQkoMN8pgoR77GlThdlghQloFChQgufJrNt5yAbqUbXE8EI8mw49Wrt573PQvA248+j36lGrJLls8x90/6THZ8PIxKsULh717TjByESVyHvdAIYXsc7bKhARcle0vDAHqPX8cAIgm4uJ8xRPZOF9Pixl0YzdUCTpa0DngKezI2RQc1w/6HKE/lrFq3VsmIap7HVEI7Zg/1t+nOZvIb/MQv3iq1BJU3WXlROinv2KD7sdMXOQPcg2bGBCMbkrDjAsrIuADwSIOK54ZF5hfzLazNl+FzVh4IAQ0kKN5M5tNakrxivDxbQNHeMTY5Hie+cdH+2coOKXJC10tFftTfRBdWCn6mtNWHuRfjrrAXTKvC5JorjK5V/pofr86YgYZW8Smy/qWbCOSjj8T91NmnSgqP+qz4WgGavKRTmsJRoXgVkvkWXwPDsrCW9NKzCX/WPEq++J4DrWaSb/qG2m/9w5VNgdTjOasQPcJ1mmlrK7Ir/2DgUms4OzQ6bx9qVNLcmqZJ9dFSccP9fBxbdbAZPuH6T3IOXIbp2vUKTRBQeQEp2bmNAVNK05ismTbJVuIx+PirDI8xiMVRHwUwcu+hYr5mEzu/CmGlsWzs4/hAUdMCwbVV8H1FkRaE6CJ/ZTkGNYv90upEnGp1np1B56uuoYPI0BMloKLOnmzyix3yv9ZMF4mieBHSJKz7/dRfpngX3ovjJjPvy7GlLVrLDdf75Ygw8hN9HPiy/hpj8sOqpno8mvApfuU1cxmDDjnEoWqJhmvO9L8BvNV475B6BGtEJ/F0Xm9jENnp6Gwdbdsv4s0ifCH/nnZ8ec/OGlUYrzbzqdATd7kJtQt1SYVIgOrBRPCCaLlqYfA1mzeiyqvI3wDrTCuLd0C6YBBTT+9HuFvjDtPSX1Ttbto1Z/GiSRJn9pfqLA1y7fDzoOlo5w6TBZw3Dp95JHS330lasVvPTvqIf1Zw8OCDYB97X64WrPOQdxD0h7SsE6Q3A63BUno3DNhdVN1TerOjL8F6wW3UagAgBOdSdIcTzn5HaKZXp6suG4sRCYzuAUBlENZY1VRu56G4VnsLiqXP8crLUYfYaoTFCzf0p7VcoP3WKyi3Xi24E4+7ESADBWs2H+yx/xCDdp33F/HLS9/3W2WTm1bceunDVmfEWSgy19UZfll4luIJyqclq8BMMXxe/fj37JqJk5feu5xIM/G4cyMmtM509mPS6T/wYA6sd/4N4atEAEnvqPusVK6e4o/aLSyzMyzsglzkcd03k95+3jhGq4CvM2oJa2BmBxZPqT9ksIvdsdsj4yvFsnQwzXEIobGypM/wlVucYJyEZ6UwblcA8qj1Oi83x7uewQpSU42HGDUO1Sb0PjApWICKI89qgXAjjHAuCswNbh0QdjMUZ+opPq8nvtG1mlR47ROTGNJCaQPhLYtsedOB7B16NxwLAl4UoSNPpXp+nqah2OIRsjY7gBvu490lNob2DJdy7qV9HUSir+HTp0JaLjYdeTWAgy5oIAa3doLFcCXORTtw7D8Ub8jzkOi261g5ktEbqtmreJUoMlXS4NZbGYh0L0LlFmK8u4WAU6T0pwYbQ5T2AjYCZRL5jOmlMCYl1nqBV6syiEpR/R8xtEVpAl+if6X/ev6ZdrQgN9i8OZ7HTp0hYNijBlSkQaqP85KEFIIElJbuGndbDOemphApdXO/PWmY6K8yyvsYBFy7CsW2Mr+DRNCZcCthGNufqd9r7edQY+4jOXGRlfUl4tp3+98hvczmlPdhoP44RBNARNzG4+1VjZWBi0XRA0feme8cnSLA+oJOz5cpxe7IYWx5xLqZkqhY6Bn88OeMN66IhjaMLfD8UrWx5s2EnqZNeHyy0W5OibZdxvWVvZW4xuABDQBeBke5t9OIPITanZ45MJYOk5vPt5SUxZwNDT7yAgcFntxQ/6IWTn35XB36fc7oHKJsJXz7Ln0rKhPbjLMECKXV6eE2iDdPv8ct2btco1vIdisRe1/LWmLwhdSnhDX6oW4gfiQE03x8g3Uy/vJ2TjskScSCJAG3SqUouMWe4fzaehiPn29lGAAZXPM99476g192v3xjIeVnJ6v5fs97HwZV8d4mq3xWZu2YmBDc2QbQEnvMbXi6S6ksXzZ89DWigz3LEb56whLssuBwivsqYcDmUsi0v/mAUuqs4cM+ZSqNCsUYa7cQ1uE4MfUmSCZKpOYao5xc/1pviExIA6MW8rVKpXL2KTRQf7lVAtABl55EKXydWr6fyKGKUWvYiaBMCmq5FzIoBMGEV8KZZGeXsqMJyGGHRaoAcnL+2d9Vughqlw9atl4Th8S0Zw4hqXNHPE+R7OIrSw98rVmx+LfaNrKxfxEVqLkNaapseB/M+HNTveBD4f7kwIhpxMYT0utix0lE7hqcAwUJWACAfIwnEH8QGDpZA18S0UkiochgyLVDHr1OI032QI3pEL5yIpBjjrMD97beCmXGIpgn9Rq+MQbuHqiEtuhR71h30SFNRB/4oT7pCuzztrx+acX264GNPI0r4+Ck9AXdChVtmujRiRTSmCwRlLwDpQvDFpSxDICqJKZyAGYRPQDZ6YuQwSI8+oRnG8OKH8tk7vG3uloemElwBMXBq7sNqaN/AbWWRzoblvh9NwGXID95plp1lJMaXpBti7jZ3xAeCZs3vpu5xT63034ImfPKemGnoQlXhetFwAXDpcizpWXQFBJDGlhWpT6qzbaK81FkEbDNw1zSrj8KcbZk+zklRvDvxvKctWlM1BhaBVPlhS6c3hf4+i6aofYhKF3rWARu16Z3MmcKcuActGboTUM/Uc69cb/ytPyNAGlsdOpSrq8UXliMVC216BRfsTrQMFgbJGrZWprZrDhz55QPMVePCnrGv+E/1PQyBztNkHHxNld9JoDOAmpNGZDFeNqaDeSmgTbXcukn99xfeA/4zIOpAKGWz3ufvKFdaSJNATvKy/Pt9K8pJGobLRwUt20/ZG2+twnH6oBriPOngXWu91LI/xPNq/np1co+naPTQxD8UcGgillaxDvR9piXkSUK2gZZixk34+tHgMWFw/rgsjVntNDAPwecdt6TtSgvpUSwUSM67x+YTJiuo0vpk3C32yVZ3r3H+8/m9Nk0GkXUK301xsDMIyGhdqi39Fl0koQJwAOmoWj+gzQXDb497OHzlfM9iczNnTWiO7uIll+RZE203t4VqXFCDWdNPtG1zP02i6AAb3Q5YXi+RPP1H1ZtUd9lMRsFee3n+z1O1T7supyu44KYjvRbLDHsHC3mS1IiNZHvoakFHnNh8mu2W8bJ2VP8V+BFyWT5SU2sJBvcXStsKSHSu0ASVWPqkZMv4tY8tyoWsm56ueOWJQmZs2a3q/0cwJfAYV7NsS96OMdunYMGohMD8hctsHQlRC3yHG9bFB2UYRhACEVo8XDkVwdK9xLNunUDQnlwHcUkkUmJUNxRi/jVKRvrrijQMrcJnLCp79Q4B9xyeFS842XZje9LEs4rFUDq8yKXWnXOI2oaNfwqjGR9CE8tqAEW5GD86jzwf4HqrSVfea61uXFBXb154jDoXhVeYl33GSh/x9N9aWUqa5+hLUDAGbBgMXzuLZ7USXiCruH7zcfIKoMIlNLLKORNvt9IbKb+MU+YbOxwYZ6SlN44pgqcHCHy2YnJQ9qqG/cmCczxwglwXQLD2x+Fsjq410XF5wHwUgSiZi8Hhv8644BA8r9Gk08QMSifl1p6e0yTGJ6E9WV6NJd09DbNQ2yOwwHi1izr/wTLWBjvgmcd2un0k+o29DtYUM/7SSsuqTIYjUaPnkmX+nEfI8QWAzMwiVycl1hkX5p3hcvoDTJsQhl4ftuPryBu8nYWfJydEHcoNMLRuTp3xyBTGa+QmwgwRTcu7XbG71+du66myj+w2TqVEfv53OqDq1D64W0kLNnLUVtaPoUGPR2eJs3III581VfjMI8eyPDkRpwoAQD+MKL5pKQKb2vLaIM7ZibcB87HRl5JDREq1fHCl2h4AWfoWttK+/DkZVYoBY/lHfLH6OSiorMCd1L1GF2hKoXws7tlQiupwHmN2RX4AqTDOUdjGmJmeTAU9p1gsz/idg4tilKGmicfUTfnQtbGtIIrKvDfgZxFV3U0/rOKPAtdKsrcTAG1p1TmF197K9NxVZvZZz+yJhId36e/lCgib++MtQTs96LP1hMrdu3voFo6ItqSkRbRKALvYq1Hb7fgO9tayYfuTNXAKEVfFGJJeiXRI5/RUb80ST8ke1TsReMstCuuGsxHaOkMXVLct7BIIa7mQZKkiSjBKGJx7BBKDPNg2MYcy8PVYmTuzjDEDozQFgA1GBy5lkaV0AaK/ZwwudrHrPMQCZWC/7f2KrtWIy1QZy7djzeQY9urPQdp2tsviz5Sezw2ptFkspSM072RTz1y3SaWY3s/gZNxyBHm+XoKmaLLPTzototkiXEveYxZ5ZmRKarS202YpCUvaoa5xFTZIvTRVitSyZ7q9QzQwVXr4y5HrAZVJjDpoMq3H5G+rlxRxAy5vfxiOhxFOAEPmMrB32yOyMcS3XLSJRwb+nR3/DWYFg/x47IngIG86LPBw/b1LocC3CGs7fd/EhrbyHe1Gke8N1nYd/PeJX0+q0/ZhUm5h5rrcu0Se6zm1hd0wooAceuEonPutFrMwNOZoqnRSdxToaqwJt691Z9oMNNFIkG4y0guEceyiFdte9GNnlPgkuOnhx81FDEXVsDN0ExvThM2mvKoVPYghT/62A7r1zXvSoQ3vYJ4pSQrABOkTFmt7uf5fexTb6MMGIC/oIqH3VdCyEdhuNVZadJZdsePhqOcQWX/6hONpkK/9nT25C2QOO1I65yeOTmnR0Qn0kUQxwnV2egYzW5y+OS67WQGKMjfz/+UPVnhwYwIQdgEY682fyhZrE+OsWTbLzlEe50mbDWlqUA+4qx4TRlQdV9Wkffwyt30SBo2SK/Aa4xvL8fypZHwJESR4JQ5yepM7Rkc9Kc2HWFfK7YY0hyHrtfe2NqN0U2RM5TBpIxHptMn3I9BbopSg4l+JE0s4matNdGkI6NcQBHmjEt/bsZhBjQVFMhM0h8WO1GGeh8Zfd3rQbUjmI8P3NKw2IauRWPnBRn+R23Om/QT2Ch661cbo+DJi07AKEE5cEBu4dBhvo7/SDWXByCTwGpnMkHClRh3VLQuQ6PLyRVD0lOtvOZkSUrAJzLlnToHR0vVbjF2SFKO6UkbEomHtOy1BjqtTpo5F4uzaJ/BtqfC7ZB61/YLW02a2PNYPY5vv1Zlm9h35VgbqvrR/CI3qhJxAGKD4Jgf6tkUakxAaNDGBHl0h5wGyf0weeYGc0uNDZDq3BEK5bCEdiY2uVa34iVX6PWA6wfJQ9E9EoaHl5CG8th0MZ2733BtVICjGwh95dREn1na9Q8AfbYgnP+ZEtLQsuw02w5tEBk5iBS9d8ka1022hxnQe8M8w5EcHbwT2ffOpWBzLLfd5d+uy1WYsFkdzJpg0Vr+NKjfxbjehdH0NA7Y3W76CI6Tj++2jn5if/Q5P9RJW32CzNxISY=