chapter399, [SORA quantum] sample verify/signature 2.

投稿者: | 04/24/2022

Quantum public key:
0xd221d53314b2b2dc8f0c6bd56d9bf29807c9eec8cb8b6582e7a8e2b0cd7a678ec122b947c9f697e95e22ffaeb5e72d1f9d2bd398888f6dcb7c932f8bfbe50dd6a6b4984f1e6d896101c7693edbfeaf91502301c26970d704056c3fe5496f48faa355f64621bd6a3cf76d4ea5818cfcc223a48d1fcd15937b202c842a3aa556cecca4e336a40675b2a3105ab81edb356059dc6dda994bb4e01c6dd7c5b97d8c9b5948ff8bfaaf5125b3a1820b6520b1ef126692c5447488d15be39e03f3466030bf9266f1de5c75c19ca49bab04553326e32117c5432bde988ccedee50fe583e276e8464e2eac7a92baeb2eb1828bedf8baaf96f1b0fdd062f191329545cd3e93fd5e806711f7aef06b996d696e63f0fba067e00f23ce95a2b608a228468a14c741eea9134e34c41d391a624691735b21d0a74167eb693c7a7126fcd4f57f2b68a52e531d2dc7e778c9282336015115552693e511eaeca6df94ecf5d2f40d8a279718838db62e915ce5291eeeae9e40fe81b8715d86a5ebbbee5da2574e1d5ac8b3ad2c7c22153fa9cd1184243ae15f2f887b7013c53e2f322c184d002303d103d6c677167269075741890aa2021174a2cac52429194f34a54810e0da3be36f968044063735e1e3798fb74927156b79c97ad0622aa965748b44db6ea34a5f720c33a08e196327b61dcdc9c9c26484e4f70eb4188852e1bcbdd28574251e4fa8e6ecea241376425c744c80f191d17fcc277f50013868b49bccbf0f479587fadccaa159a67c26caf722d3c0cbea16c0079efcced21057d206eec7c4780236458597ac946c9f34db6e6fc070b9e4c5aca6567e9d0483e6929b8e8ee045a730c1a27c563a6669e4845375e0e1d748a2b74f20ea0e6e6fb2f6b808c989e4eb4f9b86e8deccbab7ca306c91f4d415d5ec00aa6d66adb76f75f01a87172caf80938d91482846373238306716165d14e31ab7e10fa158aedd12dbce031f0618fe17f94de7c444bfade078136a5b9dc8538f85dc3cb385ae6be72ec70e54bc794bc06f95630a48be390549abddbb0a5c435cfb4107f9b2a310b12b3e3c08d7f4dda2d8c73145dbcf67d0545f88b42757f3adbb568102427f9ca17d8d8323669de7c3c774260c3a651ec372a4650e2859e2f00ce6be1065a62c3f631cf0a203a97fb296f50a57c19fdcd94fad87e1fa397aa1b57e5f1ca675ccdc999e65038df7df4864f504ff4b9b9b28581a6d80fe2da46bd7863d40f0f9920b274ab44eaf832c85476e2d8be5fe7cba1814dc413ae3db71cd5dba0146d3801524f483ef15c2e98d3064feeb7078321572b055582591bbaa07d448a43f784d27145c2ec7a39316e6e5079524d1524950b01207b2df96e3bea2c58424c2144db4489c6b721b80082c92ea83b4655347e8cc745d9b8f1cb25ee0ebff2bb0ab41ef50a4e1f25e34dca48c601e

Data:
The relationship between mathematics and philosophy is similar to the relationship between Shiba inu and calico cat.

Signature:
8tZtPsPTObaecSMHLp/2+vrrdWhV43Y4UwFS3tGeTtKvkrD2LxArsi2NTSl27Bk+pXzVUAWPTp22GED2LdigQlLm+nylWIn+0Oqn7ZFkD9KukwFdA/cA1dlSmBOIx6L+xIkEAcibO363xU4dTmZWfRp9K0EQh0wtcFocpDTXdo7Sf9yoSdzks8sZwETG5zZKOO3kNObU5Ot8ACnOACsMnC+a04QlaJo4iNYI7N2OdDIS1uT9HNj9uB+rLZuHl9i4Z8FPeVu/m7NMMJZ0g4iGEfAP34/M0C02wbFWO8J/wSztD2VavoCSiGwhpA/0E6+bTFpKH9xQ9EziLPs6Gu4nrCg0Pyy3kU+UanFUSKy1ZcmUf2ncYkTVvoTpMjuW2yuQOrqDjRbvAz8jJOWJLbY7In3MBV2VOA6MMIy6AbowFiVEPQ++zcGdDS4N94tTjJwqOnLDauI1mzWHj+JAc8fTgg5l5SiW622QCzQdWWi+pw39lm36/a8/dx6MoMVUDvcDCcr+x20PRDDY6ldAzLv4WSlvRzt3sWWnpXiJCYm4uoGlNF70yQrD7O+JrjjKds5Yk5CSIY2fDF2AtX4XG6Z3fHN5izuIRia67gUAufoy6sUB5fDb2qcU+MwNJCwaH4VarYmww60O5GfxvuLWTgDzs5d7zgbAuu3f8co3hRiM/Z99gPNxIB0IwaxmOI4NAxA4A4eC1baCkZw4eC//yhGlMfg2dPOJx8+/0ZTZj3WEk/h06+Izk1FDe31e7h27J/FBVVW0+KCRBd/LIasKRoUKG+rLKzaQsOcTltRg0TopxTG41odVfaE7GwiSzkJM+At6WQCiIuLlrNMXExhghAw51FR4scFBs+FN4hIkOtwq4tXr0Q2ybi4etEOmTH8ia/lJUzFXLxc6IqxyWE4TlESeFPbEe9yA6thp0eaHAtrVRemvMZtGOled58J+BzaU/epwURf+IUpHlBUcGQe5huO3rUCiQs6SPgxdFTlMJQeZ3MDWIAOMCAa00OQFHlepFxoV4YB2zFSHQmNT5/TnDViiBhVQH6V+ZnLvNiMSw0uY3fb5LAeQQgxZKrYAYOUzYGdTnMSinlLLcBZVEuYAs9BAwUjkkKg5EJpvK47dpo6+uJTb6dLTm0AuKHvqTvd4pHjtRYtWIwDZb3/i4sSshFs4mrz7nr+UHnFMumtDgLI4NJusMe0deFlgUuNUbF/SOeRlfe8gWoWv6QI2FEqeltocKMES9GpPNRN4nsROIR+AyEJhIHG06BIsCnAGy78PBziV0DUANP5KRY31BvXyr/TgpCIrUR2aBeYIadKisehZufzGnEA/SQsmsLsJrfdXWM8/vUMy3i1UHYsdf6Vtk1XOTsJP97kkkuXSz188q+ndMApD1FoAMSo+3k/Rp0Znhe0F0B7PqTHwqbG8Gb7A0hibOzSCHZID3uTa6a52I9i+78bbpyAGPc+yawWkSSxS1Sd8earGivK6mhIoB90HYDFrxNr9u34E06njZUTNaA2kO2Gnvsy9oBHD/cifGdv+M1tdvXC2PWId4qtsxoHiEroNaJeeCRS76CmDtok4JuB6P6VK7QCdDA2q6KH1FktpSI0v83cks8kmHBgzR7tUzP3KA1TukBdYEgkHMQDC/YYrhaTYVXGkQ/Lr0b+bXUE+yS107sL+eiF20mGmWp5TMaOwA7tTf8Zft4z6ISmlOsuTersV88Xppsld2MVz4USljJmkbj3ZDGdbleqphLHPNZkuNuquVLhyYGdhEbpyYAxxyxvuOKlAUn7Ns8qQLSsZIEo4Usf9u8XaO48vZPKSC0LJQFnvtxC+bJJFAcPMf5aXtD+8LgJzmGkScM6rJkN2LKnTB0Gka/IAhk+lAIkp4I/WycKU0dCSdx7vT5Y6/CgA6Br9m5TZM7Hj2lcmQ1A+lIdKC9GAbOQzfXa6mVtxtP8QvhK4KkUtsL2p3cLXbHhEpOTcWE90uR/9XQyYhiMnPz6l4C2WRXYeBl6+vWnB4qN1avPhkAdwZQCVLokjDCnTog+ILNCmfHZN5XTGt7gqYGr/UvTjhVARxn1FXltgPWo2aOudx0QH93lXXWNK0+5v1ZRKMDvkwpUCpyBFWFcynlSO+5XI4EjtrdEx2S0SX5bqSZWLW1Aebm1EpkGPnokYm/KrimdkH1+G1PRPjCXs8c/8WallKrp34ln8D+ZPnPxhUOu3KHPDNGyjhFCcC1LSDPpVH46PZSNVEi8k9NZAO7+4Iwrm97RWXrw3dgFoUUWfgpIuMMZi5gBpW/c/3KVT+PgTltLUKgbu5TLXlKCV8FP/H3A9FAyKWO68fS67LeOmWDil2LfD7usXPu7cemlhwtvu2aCRj4gS5SbgZ+wlA0ehAUUFavUBwHwjYLKcCwAQstPg/T6iTCeWenX3f9dPhvuXkaSW25RBTY8qtN4/KJjzAwJEvmqgli3baIg7liTYZwm/N/sYFmasH0pAy90kZn8mYkhr3YWna8VMaO2nOWXx2gNsOHyJfvoI1+DKMzXcwSnkXbmejnk2wX7p9UqYzif9mC0kAi08O2zb0deStpV1DB8o8sQBAocO1jy7aT07DG69Dx9GKfjoOsJmiHMY7EFAABtUFvG2bncwS8ul6MHzk1sTmHwjXpXffGZ5ITazujC6cPd/mTJq7PtWCZhXRwez1q/2iLpFlvfZvh1WEmeSlrUy9pXZzdqSnVSMhE/hFv4z10gpH+sDz+xShr3U/HtXnSkayhrGVDFsz3lt83xv/860XJOGcqmi4U1Izmc0ymfapFtvf1F9qADhaAZ6tZGnj8pvj0s5fbd15eDInEAcYfLCZdbH2vNiVZKn2depipM698IF0iIiepk0r4upFA+uAn0KjFV0juHSotYekyEVAtj6r0nUDhL6USrseo5F18FN7pTtNrT2+UR3Sx5Lr6YXjVmJjdbVxfHZ8ZQZI5r1aFltv2ldm9QExHbH0alO+cF/tBykUcHim6jdPKqrSJkwVBYlMsxfD1LuJSU0eg5/lYp8i2AuHAcBwXrjU4+x5k+PMr9muZyy/dD7D3ec/xiHeX3q42JX3nR+qiZLRE80TDPRAf5i0bEk7i27Cu+xisfnbtXhRRrnL9mj7yjS2JhLelJDNnRc03QLExg0fm5JTlW57Jed/9i5QPGrZ+XNy0zCYsOqQQkTxQyvkSVT0Y+aibtsTuvS5B0ASMZGa06DFX3i1CPvIMi7qqiA3DFYsFeWH/2+kQYMK6xBpF9/WM5V9YfBdoqI4fqDkswXH46GbFXshx+ELhKxEYZEfrIbBmy1pXP0xxBhKakKsoUbtBAdU3a6x250NOzSn0KuaneZk/7xNJtnkRtLy4NHGaFSvzIBSI2vAH2/9tH2Nc9BvMInc5miH2wWzCjjC0gqPo9rod4sbIlFA0HQzQcccPc2hNn8RfufU0Kdwtw//9iYEiizq/uH4ufGDcLYBtZ+CgT8fBZxcJNHZ+DTcY1lseUS388wLHixVfpwwmVMDIBM1g3vPnqQVny3Wp3Zgzv3xkHzihNlvb67TvjIoCTiBR76O6Fq2z4hzwcjRTWUFCL+/TjgWPxkrZ8QFWzuOijS3L8IeUjjhUK6Tp3+XXNepQX6ea0M2DM4l0vdyA8sOLA7i+spDnbvLRstdB1uqnlzad0TDrYzUkb1E8x7iJJNIW0PCdaTQbcl3wytFnHYkqbg/HnY6U5z0hNeuQgi/wz0x6XKk9McraPayMalgdg7XAcDCO7DQGOohsB0utDZQcoIZJvtBqHfyk6M84DmaVnxDZ+Fn5IHi9MNQHVpeyBKVzQBhVD8g48iJv7n32FSsIqh3sbKq187AWym8rhqBNC9igUqQAJfI2HK4ZiUdYlzezKwrdRUOplIkEc8xbRJlalGOlNYaHljPRdE6CslD1pejhvQBpXD8oqYZsMx2q3Ii3pXVMjrNuCe5wJQKdJABtfWjAkfgozUZAzGFUj1I/rDs1Rfd2pBZgq0OPLfYRcIbc42orzsHahz4gQ0fnVgv1HnlFQg2zeZMm+Pou4htu7bgqAg62Jf7rl6SMBs44CDLzl74A2WxhNxrxUoExPerfhFwrCz6duiJWwsmFjTcemKN1uR+PZem7MNjT/Q2KKvi6kq94pxfcq17fxmhso2EbMZiryRR9bp1zsvomaAZaGbQeHRvjxlpv4CTfhi+RfmNtmmlAEVPj+w8fpJn9L7WmQEB4ARhxrNkjVy352CTdRRVWNP0eVvVHMQK97YgjSQUMYHxk7+9ul8/7830ziRllgjCbR9rw+fuq7orTVM9qPXeknUiC+qNiy4JMnetgmpOGF7EuwKrkm1ozAg5+0abiH0wAg5yQ9PxHXkANoxcExVbG+v7w9FGb4r1nRbM9GPXechzZvDu0g2hv2uS+8rc2uBLdU9HoIzsS9+6bsbYaRmU7ZSXBL0p8ZlLnJjAGF9k97o+D9eTZgJRBQcUpeGpBMB9UIoXXDak8QOy8La3gDJoO4IcUFZ9FBOaYuQ8c7ilpeOG3aKXABzDMTnQy3q0xZwp4IqZzN0R10+r3gNGhYGrNgfWQZ406QuoCu3d43vVyIF8LApp37xDSfWnPUG72tprwHvg5JdFrwVPvo1Jyde943tW34q6DEXmeNLAqMexAYfwzkmYHfCYpiV/Xs2Ej5a5NqgL3VBxX2N4iHZHumCsCYWCdt7/gLzdmeof/PvnmSBa5OKDg/uBWv6qHf+MKC+TGpz2oxCLI87Dxj5BGDawO58uoCIS08yJlu0sYoUlkR2gxSi3yu9dgHe/koU31Iot8wUy7woqdQHYGlHsnjhzUSuMNSvPJ4dX6WLPIBZURxMF6kBfBUW7ysV3x686r37ax4njQdCEPgQX+0vgeG8DiZAAgsR/E7B1Pbl083MuX3W+ARrTeNAY+QBXJ9DsS3qCBoAMtUBrhIm5bcY9mDpE7YywWcid6UWznj8UNljgRsII0y83arPSiVMFV61v4LkKdv+wxynaltKMAbd3V64xHWgWBLvi2GOH+jZEtzWdhKCf93lA72UU/soZ01itjmLGp20C2vAp4kZZYemA6OeY8QVP8gIuA6ldYLYzk682Uf92WKnvMwkSsbv/7H24wzf9vBkzI0eLYBAYMGmLofrf12AZoqsPUaveT4urLpyUA/vCkbX90/O5LmQqhL0Y+0++3DBGBDsrHHKJyYfMwTO8FiC1L/HTt+4RqtVtiAqu7qZtevZXoPprs0wlOU6C/2PSN5nx9VyfPBWAiTrwdNObJmcAGgwHgKI4bi3wqXtDlem1PjMM3BbMZxkX7MiwmIgB8AKV3TAA5JvqWOHxlR2lQ0p3gFhgw0CawXv83xuEErQ6Qx2/CerEZo7C8Va13I+Qx5s2OHygs+Y+RyTKnJlNvgxeQlqzHbmT1uUnHCg13hd7myxct95FDNH8raMCyWye4ilKEOlPeHtl3HznqHp/ixm2JO5vbL6RTJSVONWcG/H83EBO9Z8gX74Ti/fQ7wh5zW7IGbv2heMunHop51d996ZeRQC/SDDCv0bYwuUgp+N8uwA8F8JY7fbv1rnCNVjPopwUjuJQWp74SpKkoHuVDmixCjiCYHxfIVV47rwmlgsIPjN6gL98D7i/CWZ83knsvvajAiW4yo05O5xT6zuURwjg2dK/gnT2wJIDxWd9C+VTRjMZBRQ+c8Msuo9eMwaSp8EO+bhIIuwJkCVwBo8DAWZ5d4Snx2CFipoz7bqjq3U+kLvP7Ae+TvO1rFa8PHsOMzz5kdnk+ytCqM/N8FMfJVUiVlszuBr26nvamp0dRyQkwWNItP39OT9zjzYYPULsE0jpIY10lIXnz9SwTWXsvVtIpT6TP3z2SqYDDHKf2SBjuRt6D6L7PNNh5cGKhdDKwQRwrr8Y69IDyrj0SilwhWqYofmI90ldkgOwTnpqnCIqdfls15l6fCsvukOB4nFHIwEtG6l53vuM+g+DqU+dS/hReuBUXdSG6rbcYnqjamkjARe+DmvoztVMaNE3Z8z6vCnOJwZsxgGsrb4Wsk84v/VWQhA0GV+9N0A8IqyfJxqIzre44TE/fQ90LjK/a/bHM0woWVN7qzYjW3XG8R8RHcInqsctqR7WDSq3KYds0FK9NENrTR66ileObni2Kl9F4PaaTUsEEhYxsPj9JcapnUT21LOznlcC7uh4BDE80oUBOAQeHzBswgf+/Tets4C1mTuWHIDodMpyQNjLvGtog+oEXgYyMWLBcRSpy8Eavip00TJL7eLAD1by/XtEC1C4Qo+euf6Tvs5MY8MpnWxN3Jh+iq12Vexq/+eWlvNbPcBoLkz/DU/lG7sW+Ak5L6AtwrUKDPGSiubh+DUfZa/PygTUCWrMJZual6U4T85bUwGnTzqc9AShOphgIs2oa3RUIKTb5Sh+Cv1C//EzDXXwVqf9yVtNuY6BQ1i3vHo57K9JbqVdKWS2skFv/tzhHlQIwvEhdE+dN/pGVcW2T7GQPuBzH6j8RUWNstpdu2p2IRkfR1DDDH29VC3FcCUyenxoEtWWfohZLSoA7cgqbtW2gIZ/s6V0vrCfozM9pIlvhAKIRG/4Vl64hOkJI6Q84mYTYSipYoPzD83pBF75bphQQu1M12c+ojwKdL0+UZIMR1r+T0zRcI97sc/ahGMw2rV5xk6QOAw9CsgyVpG15t191NhHYlA/pXe7KUEV1/Hl5Kq+13uLrBEczYIIBKZap7sUMzw+drW02XDlJtJPYYYubli6RQ9siIPIrOnRPKWCGF1nK7Xyuv9KqGumg++9nYjrz3ScKjSVV9g4QmW1KnbecHtlFNnZ5HfvLC1XH4cwZsdAi/zXQa2M7L98/EapXa1odFlDe4IUJgbSdKUNnOlT0Vb5fDeeK2K8d0nZ5WtMwl9HyKBXnYblqg4470aE+FtVc/77kP37qURdH8QOxVivUHTXyXGEiGT3xvKfXYOLWTH+Z4q7S2dtNnHLAKr/xsS12qeJLUEPGywAuzsHlR5tB+0853q9FlMr3s8zrcwaaqnZ/nfBXQosArQ0kPKPCAnurnrdxy4+1LwTVCjQSOIAd7MQ5n43USuJclKieOP3U6I3hL6YrVvICL1XgLKLUpBm6V6c6cmtnfzhsPkEn1pgVEoKeGhPlklNpNQ+UvBAPnrL3IPy2GOcm9bfaaHf4vl/jcy4UbbaT0zP0pN1zKyRD1H/lxxu7klsvCUJPrZ2KGMpsZnP50K4v3nQt+edcnjRsvzeihpob8loB3PU3PiF76bVxTm1GDWCbMcZYNj+6S6ykYk9ULfrhJHeMxO84Z4VYt0X4IAJRzi+ijgAobiq8n10zyE4uqEWV8N+kDtBs+af95Y/3YSjxptfRXh2GSIWTeNBhKuTxw+/emlGrqNdybG0zxdLpmJ6XGczTe0dFlo5cvs2hKmW/cs6HOJ0MKKsWk16s7baZ86MtU3/t/GSQrB4VHAtfbwU6I06spG5+Sng0Z8KYuEnpOCZsXF6N6QczYei6xv8OV/B0msGtNnn5ErKi10LwugTV23k6G7IWE7DVy1o+QNuCf3/WGY6UxB63N1VXvFip2QGVxEIi/DwU6CGcPg6OM+Tod+IoyqFZrXGeec4mS6ZVaY+Jb0fpyuu6ZpPoFSYIGUHn9B/kV1RiJLjHa8+inAiWwskYy27R4V9Sz/yLdGGT0ugxxfbxZujPWRUjpc036eKw3uZpyxT9gjbEG31Z1OKIHEYT9enDNgliNde021WotFGd8m1sAaTdhrQ8cpLr+X0gxm8ubW+3J1ITrZQ+lOk/BfAHQLTwPHq9+jjRW9MLitAWIvI+urEQ/ONXW20FhpEkzjxhI/nEj6Yz18k/qGp/bdPfMP8g64Ms+GDjv+RogIjk35HrpaDUwVbIWBFEUwu7TrXFTZE4oHotqO4UZuv8daWEHqEwXk1XzUrNHMG7b31kLKcvyT932viBIF7d0hPubWW1gyP7IIJ4TPeiJtM5B8NAu6jJmmLqCKyyD3HUtiO+U4ELN+uz/0gXnEM6n8HL5x55NWIYRpWnBczVXbXu2ump0Gi47wwy2COvSeyzwQrr8NyRuRBwBkwObvjh+WJt8W6kHe1FJrXq//JMC/+Lx9ShiMFfnu1x3Z4FduhUEGch54019visk544TLzJAjJUv3pu3huujIFDO6HoktRBVyUDv4L8+rtwyQZLAwMgRe2KC0lVjdxTODQHAyLnoSou8kfs+tOb2Sklis9E0D5ap8ARwYZNhG3Wb4CJ6W2CPMon7C+krk6o8D8iCO5B7rAfKjEp2Emrg4QT6P8GDQzythDT2f1+lTadRBy3QFRKw8FJqs8S5litlk8bx1E1PGDgptprpn6vnbldn6vBQRTj42tPfYC0ZSCi+31XLMbx0KSsd66Y/yTMn3v5+u3Iud3nHcfQw5VAgWD4A+FDvIxDzxBzFvOqJ89UEvVQIGh19LIyBEro/PMOw6zVpgsahMcJymyfAavUMdya2xZGOw1f9mGQM81f54zf1lxQGqJr/bZVcJ5pQoj7kVuKUtg/A/S4eeGv3JLnc6rstaAOgQ6qCn1qknJ1KSJ3IivQn6hfISY7GMpetdCa1RiWHLXTqmnkG4KPPU8m/8QiLILf7JJqYk3l3dh1jhV8y7fPAPiVO8z3g4qs3mpqXo7hNPmwYWB0NuyZD34oUh0ZHlTK0cdhI9qdehLtDDnVoAnj/gbtBIYkKI1ZPoVVntnRBJ4Y+DxbpTIikR1spQKnslGQ5Lg37AGsLOqXd/3pLEPLSLx+QESEkp19BQIN3HNfsZAmjFAIDcj+EweS8TPwWM6Q2vUsRf9UBpxp8f6kdcZZkA9xIBEWbxakgRplMuQVkXlInmARoN1O76Sn6V/tub89yK13W5gALHuRFw7UVNL+wS8UmpU5bqwJQnr956ZzzZ0bFgctpjIS5f4ZP3/hw3I8XcP3VccGIUl8R3gd7e56RnD6UjehURrJexELXlTsosXXAQ+UANb8OEksWhxebz5wrT0MZV+XCbR+rZXmdYQ8xCGaLDFBcqnr7psTF9gILMRttEET9lLc4V6beLNThnOStCocezTz6QifqCHCIQiTL1GuO85rhSXXGzZv16w0XlKqex+RTlLeFFAXu8+cE8mTQkEDSM4NPrUtvdRc7LrabztWg8MbfGOS4h6j/UPm5HdW9r2TP2CKWG0n8dkXHN2JEdK2pd9HFc20uzz7IJ0SoR1hPdt3FgldGf6Az8qz43rHI/fSNUfHsGPAilnTvkYvNvyssimP1x7IcUvRRo2adhb38cwg90PeyLS15CLdBEyBUywr8zk4ijOKBMfiVlKQC0I0NjaLkQrrlPSQBbwRtncFGUTXu7X7cSzzHBSmpryBF9v/C3kmzU+QDPSR+AYUB5GJdfGm4YbSlS+OBfPf/YfRVAIR12JyjNjIbnL4rWmVTSt5+FJS5d5zlGM/4HxhS3sKn9HBUGfRMSltUlBmdGlcXuyECoruDJZzA07v+f+e67+QETVKtTISwMX2hGJalx9vTN5MB1p9Uft8L6re36SIRUtC20PphbyjWeH5ytLXeXsOVwWJmez65dnJqUlpwNKy+JbRdKDOtdTVWXgH5e5W3EDhBww3tqF9eQq4AfQBi63/tbQ16btg9DOtYcEWFCChlMhKY9J4sOODt8TnvR5mq8Ka0MR0d8doikpRt4MCrWdyWorHtM8M6X0LUC3QxNQcdHuqo3PYBQbWeODRTr5FjjoLzFZCmdfKw7J/FGWhlfgZEI3wH2eO8EGOVfPwxA04HyF/9Pn/qhjLhMyNyd7Zo2eAv9Cs7t1a3KEIdLyygBqazrIuS7Y3nf81oGk9JlYEZXN0VJCerInRDm6CdvC26mOCBPHFQm4wQSwHsiDbsh+kJeoOfOc/bcMvnalw705TP61BkuaRRPc7VggnrFdArteU9Amzo3sqgIvrHCbq73HPItTF1nrkpX3DrJR7NeKY1CPZ09dh541kPxPHNzj8XU5S2VyieTcysr8E7MMjr9bmHMdb0qyOYqpqdZTXqncpPnqo7hG47uK72cBTQ/eL3L1fE7XjY1tyGfpqArwqEchZoJnPohv9SCfapR+9JtDFbrZ/5tQ8yeUY7N1iLykX0r6fM1uxeP2BiW7oq0wIsmvJf7aeE+3JMoIxOBfXpL2brLkGMq4WRDYK8PK/dwKUGAhPO4pS/4W3vefPOrxLK1lOKhUMS8Ahmey/fFQPs/VDeQsbgZyac+dKvcvupzCjkDQhlVb2yR9wFCGsIgH/QOfpLD+vWKcdzn+zdlVhAtd77y8lT/vWOaJwLplYLepkIF/kPsoUzX++O+g8PU60WWxenHX/HWM206waGeDCy4dbxYSzoJc+PToAQyPdrfjkSFZjWy+4KX62HZH1pyfOyHN27vsrWic6rHxbjgA8rhXBJe4snF0INcmV/cs1q2Eks6wIR8zN7KG+U5PYh4rZUENzIrdA/THGqj7/+tyWvMJMqRMqRyxHvvMZnK5vNFUlAiljLjNrrqhPw0nK6gGlCj97HlSoJB8K0WGfxK8Mj2STA/KIN7gz8ZtlsfT6nmCJrb/mtFta/KAE7O6/lufdYKnzi7ujR7apQhTI04o+dASbwZt5WEetmuadv2HA4qOyFlLTwGhYrUhs6vivpwG01t3nXWgZfM4kJwlppu6T6y0+qDLvAHYsO7RcTGoVhOAodc+IEv2yD+0OgKeDwFQ0fsPlOqJHCbraW6oL4PzIn/6m0Eilj5/PRrGq7ziwvKWCpW9GKyEblBL2UCjJiyKQI6GUQ+AaSmcoh/57LBjFhUccumHOG0dp2eVgQXEy6weF7BiqSNkCwrqWC4ZFdOnZqrYvgJIZVRd3aj4qmkSfmTafXlvQzFaER3bLp5mjgL8ElKa+WfS5+0feCg7CD3gqQ2588A4KWuMWdnW3Tfat0YaXQS0pSOWQFmamnZndKAtTyWU2nkQQvUP1g=